LESSON PLAN COMPUTER METHODS IN POWER SYSTEM (III Year B.Tech. II Sem.)

Sl. No.	Name of the Topic	No. of Classes required	Cumulative number of periods		
UNIT – I : POWER SYSTEM NETWORK MATRICES					
1	Graph Theory : Definitions Tree, co-tree, Loop, Cutest matrics	2	2		
2	Bus Incidence Matrix, Y _{bus} formation by Direct and Singular and Non Singular Transformation Methods	2	4		
3	Numerical Problems.	2	6		
4	Formation of Z_{BUS} : Partial network, Algorithm for the Modification of Z_{BUS} Matrix for addition element for the following cases; Addition of element from a new bus to reference, Addition of element from a new bus to an old bus, Addition of element between an old bus to reference and Addition of element between two old busses	3	9		
5	Derivations and Numerical Problems	2	11		
6	Modifications of Z_{BUS} for the changes in network Numerical problems	3	14		
UNIT -	- II: POWER FLOW STUDIES				
7	Necessity of Power Flow Studies – Data for Power Flow Studies- Derivation of Static load flow equation	1	15		
8	Load flow solutions using Gauss Seidel Method: Acceleration Factor,	1	16		
9	Load flow solution with and without P-V buses, Algorithm and Flowchart.	1	17		
10	Numerical Load flow Solution for Simple Power Systems (Max. 3 – Buses): Determination of Bus Voltages, Injected Active and Reactive Powers (Sample One Iteration only) and finding Line Flows / Losses for the given Bus Voltages.	2	19		
11	Problem Solving	2	21		
12	Newton Raphson Method in Rectangular and Polar Co- Ordinates Form:	2	23		
13	Load Flow Solution with or without PV Busses – Derivation of Jacobian Elements, Algorithm and Flowchart.	2	25		
14	Decoupled and Fast decoupled Methods – Comparison of Different Methods.	2	27		
15	Numerical Problems	2	29		
UNIT -	UNIT – III: SHORT CIRCUIT ANALYSIS				
16	Per- Unit System of Representation. Advantages per unit system Per –Unit equivalent reactance network of a three phase Power System	1	30		
17	Numerical Problems.	2	32		
18	Short Circuit and MVA Calculators, Fault levels, Applications of Series Reactors, classification of reactors	2	34		

19	Numerical Drahlana	2	36		
17	Numerical Problems.Symmetrical Component Theory :Symmetrical Component	2	50		
20	Transformation, Positive, Negative and Zero sequence	2	38		
	components: Voltages, Currents and Impedances.	2	50		
21	Numerical Problems	1	39		
22	Sequence Networks for Transformer, Synchronous	1	40		
	machine, loades, Transmission lines	1	40		
23	Unsymmetrical Fault Analysis and calculation	2	42		
24	Numerical Problems	2	44		
UNIT – IV					
25	Elementary concepts of Steady, Dynamic and Transient Stabilities.	1	45		
26		1	10		
26	Transfer Reactance	1	46		
27	Steady State Stability Power Limit Synchronizing Power Coefficient	1	47		
28	Power Angle Curve and Determination of Steady State Stability and Methods to improve steady state stability.	2	49		
29	Problem Solving	3	52		
UNIT – V POWER SYSTEM TRANSIENT STATE STABILITY ANALYSIS					
30	Derivation of Swing Equation.	1	53		
31	Determination of Transient Stability by Equal Area Criterion,	1	54		
32	Application of Equal Area Criterion, Critical Cleaning Angle Calculation	1	55		
33	Solution of Swing Equation: Point-by-Point method.	1	56		
34	Methods to improve Stability	1	57		
35	Application of Auto Reclosing and Fast Operating Circuit Breakers.	1	58		
36	Problem Solving	2	60		